基于车载视觉的行人检测与跟踪方法 - 中国一卡通网
用户名密码 [免费注册] [找回密码] 推广技巧 发布求购 建商铺  发产品  会员体制比较  
 

基于车载视觉的行人检测与跟踪方法

来源:中国一卡通网  作者:中国一卡通收录  发布时间:2012-03-29 08:58:52  字体:[ ]

关键字:识别  Adaboost  算法  Kalman  滤波原理  

摘   要:为提高城市交通环境下车辆主动安全性,保障行人安全,提出了基于车载视觉传感器的行人保护方法。利用Adaboost 算法实现行人的快速检测,结合Kalman 滤波原理跟踪行人,以获取其运行轨迹。 该方法利用离散Adaboost 算法训练样本类Haar 特征,得到识别行人的级联分类器,遍历车载视觉采集的图像,以获取行人目标;结合Kalman 滤波原理,对检测到的行人目标进行跟踪,建立检测行人的动态感兴趣区域,利用跟踪结果分析行人的运行轨迹。 试验表明: 该方法平均耗时约80 ms /帧,检测率达到88%; 结合Kalman 滤波原理跟踪后,平均耗时降到55 ms /帧,实时性较好。


  2 基于Kalman 滤波的行人跟踪

  使用离散Kalman 滤波预测行人在下一时刻可能出现的区域,缩短目标搜索时间,实现行人的快速跟踪定位。 行人跟踪结果不但能获得行人的运动轨迹,也能为行人的运动分析提供可靠的数据来源。

  2. 1 Kalman 滤波算法原理

  Kalman 滤波由动态过程模型和反馈修正环节组成。 动态过程模型实现预测功能,反馈修正环节则把增益和残差的乘积作为强制函数作用在模型上。 设系统的状态方程和观测方程如下: 

  式中: Xk是时刻k 的n 维状态向量; Zk是时刻k的m 维观测向量; n 阶方阵Фk - 1为状态转移矩阵;m × n 阶矩阵Hk为观测矩阵; Wk - 1、Vk是2 个服从正态分布的零均值高斯白噪声序列,方差阵分别为Qk、Rk 。 


  为滤波误差方差阵。

  2. 2 行人跟踪

  根据Kalman 滤波原理,本文对检测得到的车辆前方行人质心位置和行人外接矩形的高度与宽度进行跟踪。 在每帧图像中,行人的状态可以用其质心的位置、位置变化率和外界矩形框的大小来表示。 假设(xt,yt) 代表行人区域质心点在第t 帧图像的像素位置; (Δxt,Δyt) 分别代表质心的变化; (ht,wt) 是包围行人外接矩形的高度和宽度; (Δht,Δwt) 是高度和宽度的变化。 因此,在第t 帧图像中行人的状态向量可以表示为: 


  由于行人的运动速度较慢,相邻2 帧图像之间的时间间隔较短,可假设行人在单位时间间隔内做匀速运动,状态转移矩阵可以表示如下: 


  为了观测道路区域各个状态变量,取观测向量Zt = ( xt,yt,ht,wt) T,选取系统测量矩阵为: 


  为应用Kalman 滤波跟踪车辆前方行人,必须确定状态变量和误差方差矩阵的初始值。 本文在连续2 帧图像成功实现行人的识别定位后开始进行基于Kalman 滤波跟踪。 假设检测到行人的图像是第t 帧和t + 1 帧,初始状态向量X0可表示为: 


  此外,还需要定义相应的协方差矩阵P0 . 由于Pt随着获取更多的图像反复更新,为此可以给它一个较大的初值。 假设预测位置在x 和y 方向上离真实位置具有± 10 个像素误差,在x 和y 方向上速度离真实速度有± 5 个像素误差。 由于行人腿部的运动,使得行人外界矩形的宽度要比高度有较大的变化,所以假设外接矩形窗口的高度与实际行人矩形窗口的高度误差有± 5 个像素,高度的变化率有± 3 个像素误差; 宽度的误差为± 10 个像素,宽度的变化率有± 5 个像素误差。 由此,误差协方差矩阵P0可定义为: 



更多

新闻投稿合作邮箱:yktchina-admin@163.com    字体[ ] [收藏] [进入论坛]

推荐文章

论坛热帖