来源:中国一卡通网 作者:不详 发布时间:2012-10-08 09:05:26 字体:[大 中 小]
摘 要: 提出了一种基于肤色检测和人眼定位的人脸检测方法。使用基于"基准白色"的色彩平衡方法归一化彩色图像,将图像在HSV 空间进行肤色分割,确定候选人脸,采用形态学滤波器对其降噪。在获得虹膜位置的基础上,使用Susan 算子定位两个眼角点,从而实现眼睛的精确定位。实验证明提出的方法能够很好的检测人脸、定位人眼,尤其对存在人脸旋转和光照异常的人脸图像有很高的精确度和鲁棒性。
其中t 为像素间差异阈值,一般可设为27;
代表掩模面积值,面积越小边缘强度越大;g 为几何门限,设定为
经过上述算法获得的眼部区域边缘图像如图4(b),在此基础上对图像中的黑色边缘曲线进行角点提取即可获得准确的两眼内外眼角点位置,如图4(c)所示。根据Susan 算子的特性,它既可以用来检测边缘,又能够提取角点。因此与Sobel、Canny 等边缘检测算子相比较,Susan 算子更适合进行眼部的特征提取,尤其对两个眼角点的自动定位。并且通过适当的调整Susan 算子的参数r 或者阈值t 和g 的大小,对不同质量的人脸图像都可以取得很好的效果。
图4 人眼区域处理图。
4 实验结果
本文使用本实验室建立的人脸库,包括每个人10张(不同表情、光照、旋转角度等)共200 张人脸图像,大小为180?200.
在正面人脸的图像上测试,人眼的内外角点定位准确率达到98.4%,在侧脸小角度(左右旋转以内)人脸图像上测试,准确率达到90.2%.人脸检测平均时间为2s,定位虹膜和内外角点平均时间为10.4s.
图5 人脸、瞳孔及眼角点定位。
图5(a)图为人脸检测结果,图5(b)为瞳孔及眼角顶定位结果,其中红色为瞳孔位置,黄色为右侧眼角点,粉红色为左侧眼角点。实验结果证明本文提出的方法可以很好的检测定位人脸。
5 结论
本文针对人脸检测中的肤色检测和人眼精确定位问题,给出了一种快速准确的方法,有助于提高人脸识别算法的识别率。肤色分割前先对图像进行色彩平衡,采用形态学滤波器对候选人脸进行降噪,这些步骤都大大提高了人脸检测的精确度,而且并没有花费很多时间。在人眼精确定位上,采用更适合提取眼部特征的Susan 算子精确定位眼角点。实验证明该方法可以很好的应用于人脸检测。
推荐文章
ARGOX OS-314TT条码打印机
出入管理系统TXY-C2
校园人员出入管理系统
MHCX-P100证件识别仪
身份证阅读器核验终端
立式身份证阅读器
独立的内置天线RFID读/写器
神思二代身份证鉴别仪
半无源RFID响应标签
论坛热帖