来源:中国一卡通网 作者:不详 发布时间:2012-05-24 09:41:25 字体:[大 中 小]
摘 要: 近年来,中国各大城市轨道交通蓬勃发展,AFC系统的使用,可实现购票、检票、计费、收费、统计的全过程自动化,有效控制地铁的客流量;而作为与乘客直接接触,关系地铁形象的读写器、票卡等设备,更为重要[1]。目前国内的射频卡读写器系统主要采用ARM7处理器为控制器,与上位机的通信方式通常采用RS232或RS422有线通信方式,限制了AFC系统的自动化和网络化进程,同时随着业务的扩展,现有系统的数据存储容量已经无法满足日益增长的交易数据的要求。针对以上问题,设计了一种基于ARM9和MF RC531的高性能读写器,能够进一步提高票卡刷卡效率,节约乘客进出站时间,提高票卡读写数据准确性,为实现读写器全面国产化提供基础。
近年来,中国各大城市轨道交通蓬勃发展,AFC系统的使用,可实现购票、检票、计费、收费、统计的全过程自动化,有效控制地铁的客流量;而作为与乘客直接接触,关系地铁形象的读写器、票卡等设备,更为重要[1]。目前国内的射频卡读写器系统主要采用ARM7处理器为控制器,与上位机的通信方式通常采用RS232或RS422有线通信方式,限制了AFC系统的自动化和网络化进程,同时随着业务的扩展,现有系统的数据存储容量已经无法满足日益增长的交易数据的要求。针对以上问题,设计了一种基于ARM9和MF RC531的高性能读写器,能够进一步提高票卡刷卡效率,节约乘客进出站时间,提高票卡读写数据准确性,为实现读写器全面国产化提供基础。
1 读写器功能分析
地铁AFC系统主要由中央计算机系统、站点计算机系统、终端设备和车票4部分组成。终端设备包括出/入站检票闸机、自动售票机、车站票务系统、自动充值机等现场设备,如图1所示。
终端设备是直接为乘客提供售检票的设备,乘客通过射频卡可以购买票卡、进出闸机、为票卡充值,而建立射频卡与终端设备的桥梁就是射频卡读写器。射频卡读写器作为与射频卡通信的核心,其性能和数据处理能力直接影响到整个地铁AFC系统的工作质量。图2为读写器总体结构图。
目前读写器主要采用RS232或RS422有线通信方式与现场终端设备通信,接口单一,传输速率有限,同时也不能同远程监控主机进行无线通信,限制了读写器的网络化。本设计增加了USB传输接口,提高数据传输效率,使用方便快捷。同时增加了GPRS无线通信方式,能够与远程的监控主机保持通信,向监控主机发送设备状态信息。采用这种多接口协同工作的方式,可以保证读写器的可靠性和安全性。
2 硬件电路设计
射频卡读写器硬件结构如图3所示,主要由主控CPU、Flash/SDRAM存储器件、射频收发模块、SAM卡认证电路、通信电路和显示报警电路等组成。主控CPU采用Atmel公司基于ARM926EJS的AT91SAM9260,主频可达到180 MHz,显著提高了读写器的处理速度。外围扩展256 MB容量的NAND Flash存储数据和2 MB容量的NOR Flash存储代码,实现数据和代码分离。一方面提高数据的存储容量,另一方面提高了代码的执行效率。
AT91SAM9260不同于一般的嵌入式微处理器的一个特点是,支持USB2.0全速12 Mbps的从机接口,同时它的USART多达4个,方便RS232、RS422和GPRS模块的扩展[2]。GPRS模块主要部分为Qisda公司的M33模块,读写器正是利用了该微处理器丰富的通信接口资源和强大的中断控制机制,快速高效地处理与上位机之间的数据交换。
射频读卡芯片选用MF RC531。MF RC531是Philips公司开发的非接触式读卡器芯片系列的一种,可以读写符合ISO/IEC 14443标准的TYPE A和TYPE B卡,具有很高的集成度、数据处理能力和很强的抗电磁干扰特性。内部自带的发射部件能够直接驱动天线,操作距离达到10 cm,不需要增加额外的驱动电路[3]。MF RC531灵活的SPI总线接口可以方便地和微处理器相连,SPI接口不需要进行寻址操作且为全双工通信,使得通信简单高效。读写芯片是整个读写器的核心,它实现读写射频卡所有必需的功能,包括RF信号的产生、调制、解调、安全认证和防冲突等。作为微处理器与射频卡通信的中介,MF RC531与射频卡由射频场来建立无线连接并完成数据交换。
读写器天线通过自身线圈建立射频场与射频卡进行通信,将产生很大的电磁辐射;同时GPRS模块发射的无线电磁波也会影响读写器的电磁兼容性(EMC)。为了保证EMC要求,采用读写器射频主板和天线、GPRS模块分别制版,天线和GPRS模块放置在读写器底部,与读写器主板之间通过隔离板屏蔽电磁干扰。同时读写器主板PCB制版采用4层板,射频部分属于高频电路,集中放置在电路板的一侧边缘处,可以减少电路板的电磁干扰。读写器天线、GPRS模块和读写器射频主板分离的设计方案,不仅有效地保证了电磁兼容性,而且形成了系统的模块化结构,为系统的扩展升级提供了硬件设计和软件开发上的极大便利。
3 软件设计
3.1 软件总体结构
该读写器的软件部分主要采用C语言开发,启动过程中的低级初始化部分用汇编语言编写。读写器软件设计采用模块化的编程思想,系统软件包括主程序、射频卡识别及读写子模块、GPRS数据传输子模块以及USB、RS232/RS422多接口的协同工作机制。软件总体结构流程如图4所示。
推荐文章
GS40远距离读卡器
T3无线/GPRS手持机
ID卡串口阅读器
IC卡阅读器|IC卡读卡器
MS-S100-CP手持机
MS-D300-CP远距离读卡器
ID卡阅读器
二合一磁卡/条形码槽式阅读器
三合一刷卡自动式查询终端
论坛热帖